
Structure of Event Files
Introduction
Event files (extension .events) contain a sequence of events as a result of client-server interactions
where servers are usually components that implement ComMA interfaces. Events are commands,
signals, notifications and replies to commands. They are defined in a ComMA interface signature.

Event files are not intended to be manually constructed by the users. Usually they are automatically
generated from existing system logs and observed client-server communication. The file structure is
optimized for machine processing.

This document describes the format of event files. The target audience is engineers that implement
event file generators and users that specify small trace files for experimentation purposes.

Structure
Event files have the following sections:

 Imports of the used ComMA signatures (optional)
 Declaration of connections
 Optional declaration of component instances
 Events

Important: event files must not contain comments.

Connections and Component Instances
A connection represents the usage of an interface by a single client. The interface is provided by a
server.

Connection structure:

(client_id, client_port, interface_name, server_id, server_port)

Signature imports

Connection
declarations

Component
declarations

Events

Client and server identifiers are symbolic names that denote communicating parties. The identifiers
are unique in the scope of the events file. A communication party can play the role of a client in one
connection and the role of a server in another one. For example, a component instance with a given
name (declared in the component declarations section) can be a server for connections on the
provided ports, and a client for the connections originating from its required ports.

An events file has to contain at least one connection declaration and may optionally contain
declarations of component instances. If component instances are declared and used in the
connections then the port names and their interfaces as given in the component definition must be
used consistently in the connections. This is explained below.

In the example, a single component instance c0 of type Imaging is declared. The definition of
Imaging is as follows (as a part of a definition not fully shown here):

component Imaging

provided port IImaging iImagPort
provided port ITemperature iTempPort
provided port IVacuum iVacPort

The names of the ports in the definition have to be used in the connections in which c0 participates.
In the example file there is one client for each port (Client1, Client2, and Client3 respectively). This is
captured in the declaration of three connections. As can be seen, the server ports and the associated
interfaces match the component definition. The client identifiers and the client ports in this case are
just names, there is no component declaration for them.

It is possible that a component instance is a client for another component instance. In this case the
client port name in a connection must be equal to the name of a required port in the component
definition. Circular connections in which a communicating party is a direct client of itself in the same
connection are not allowed.

It is allowed to declare multiple component instances. Multiple component types can be used in
component instance definitions.

Remark: currently there is no validity check for a proper match between the port names used in
connections and events, and the port names in component definitions.

Events
Events are occurrences of commands and their replies, signals and notifications as defined in a
ComMA signature.

An event has the following structure:

EventId
Event_description
…
parameter
parameter
…
End

EventId is optional. If given, it is placed on the line before the event. It is useful for visualization
purposes and for facilitating the correspondence between the error reports and the events where
the error is detected.

The Event_description gives the type and the name of the event and time information about its
occurrence. An event may have zero or more parameters, each on a separate line. The keyword ‘End’
indicates the end of the event description, it must always be present and placed on a new line.

The event description has the following format:

event_type timestamp time_delta source_id source_port target_id target_port interface_name
event_name

Event descriptions are placed on a separate line.

 event_type: one of Command, Signal, Notification, Reply
 timestamp: a representation of the time of the event occurrence. Can be either an epoch

time given as a real number or a date-time format: YYYY-MM-DD-HH:MM:SS.MSEC
 time_delta is the time difference between two consecutive events. It is measured in seconds

and given as a real number. The first event has time_delta 0.0
 source_id, source_port, target_id, target_port must match the connection declaration. In

case of commands and signals, source_id and source_port are the connection’s client_id and
client_port; target_id and target_port are the connection’s server_id and server_port. In case
of replies and notifications, the situation is reversed

 interface_name and event_name: the name of the event’s interface and the event name. In
case of a reply, the name is the name of the command

Parameters
An event may have zero or more parameters. Commands may have in, inout, and out parameters. A
command event gives its in and inout parameters in the order of their definition in the signature.

A reply to a command gives parameters in the following order: inout and out parameters (if any) in
the order of their definition, reply value (if any)

Every parameter is given in a separate line and has the following structure:

type_indicator value

Type Indicators
 Simple types: int, bool, real, string, bulkdata
 Enum types: enum
 Record types: record
 Collection types: vector

Simple and Enum Values
 Simple types:

o int: 1, 123
o bool: true, false
o real: 123.0, NaN
o string: “some string”
o bulkdata: the value of a bulkdata is just an integer that indicates the number of bytes

in the data

 Enum types: the name of the type and the literal, e.g. Status OK

Some examples:

Record Values
Record values have the following general structure:

Record_type_name field_values END

If the record type is defined in a ComMA interface, the name looks like:

_commaInterface interface_name type_name

If the record type is defined in a type file the name is just the name of the record type.

Field values are enumerated with a space as a delimiter and without giving the field names. Please
note that type indicators for field values are not given either.

Examples:

Record type defined in an interface:

Record value of type Point:

Nested record type defined in an interface:

Record value of type Arrow expressed in ComMA expression syntax:

Type indicator Record value

The same record value as a parameter in events file:

Vector Values
Vector values have the following general structure:

Base_type_indicator size values END

Examples:

Vector type of records defined in an interface:

Value of type Points expressed in ComMA expression syntax:

The same vector value as a parameter in events file:

Type indicator Vector value

Base type
indicator

Size

First value Second value

Appendix
Grammar of parameters:

Parameter ::= TypeIndicator Value

TypeIndicator ::= ‘int’ | ‘bool’ | ‘real’ | ‘string’ | ‘bulkdata’ | ‘enum’ | ‘record’ | ‘vector’

Value ::= INT_VALUE |
 BOOL_VALUE |
 REAL_VALUE |
 STRING_VALUE |
 EnumValue |
 RecordValue |
 VectorValue

EnumValue ::= EnumTypeName EnumLiteral
EnumTypeName ::= ID
EnumLiteral ::= ID

RecordValue ::= (‘_commaInterface’ InterfaceName)? RecordTypeName Value+ ‘END’
InterfaceName ::= ID
RecordTypeName ::= ID

VectorValue ::= BaseTypeIndicator Size Value* ‘END’
BaseTypeIndicator ::= TypeIndicator
Size ::= NON_NEG_INT

The terminals INT_VALUE, BOOL_VALUE, REAL_VALUE, ID and NON_NEG_INT are defined as regular
expressions:

INT_VALUE ::= (‘-’)? (‘0’..’9’)+

BOOL_VALUE ::= ‘true’ | ‘false’

REAL_VALUE ::= (INT_NUMBER '.' (‘0’..’9’)+ (('E' | 'e') INT_VALUE)?) | ‘NaN’

ID ::= ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*

NON_NEG_INT ::= (‘0’..’9’)+

STRING_VALUE denotes any sequence of characters surrounded by single or double quotes.

