
Runtime Monitoring based on Interface
Specifications

Ivan Kurtev1 Jozef Hooman2,3 Mathijs Schuts4

1 Altran, Eindhoven, The Netherlands
2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands

3 Radboud University, Nijmegen, The Netherlands
4 Philips, Best, The Netherlands

Abstract. Unclear descriptions of software interfaces between compo-
nents often lead to integration issues during development and mainte-
nance. To address this, we have developed a framework named ComMA
(Component Modeling and Analysis) that supports model-based engi-
neering of components. ComMA is a combination of Domain Specific
Languages (DSLs) for the specification of interface signatures, state ma-
chines to express the allowed interaction behaviour, and constraints on
data and timing. From ComMA models a number of artefacts can be
generated automatically such as proxy code, visualizations, tests, and
simulation models. In this paper, the focus is on the generation of run-
time monitors to check interface conformance, including the state ma-
chine behaviour and the specified data and time constraints. We report
about the development of this approach in close collaboration with the
development of medical applications at Philips.

1 Introduction

Precise interface descriptions are crucial in the development of complex systems
with many components, including third-party components. Unclarity about in-
terfaces is a frequent source of errors. This does not only concern the signature
of messages exchanged between components, but also the expected order of mes-
sages, assumptions on timing behaviour, and constraints on the exchanged data
values. During system development, proper interface definitions are essential to
prevent integration issues. During later phases of the system life cycle, contin-
uous monitoring of interfaces is important to prevent system failures due to
component changes. For instance, a supplier might deliver an improved version
of a component which, however, has different timing characteristics.

The focus of this paper is on the automatic generation of monitoring support
from interface specifications. This is done in the context of the development of
minimally-invasive interventional X-ray systems of Philips. An example of such
a system is depicted in Fig. 1.

In order to support the development and usage of precise interface specifi-
cations we proposed a framework named ComMA (Component Modeling and
Analysis). ComMA enables model-based engineering of high-tech systems by

Flat Detector

Control Pedals

Tube

C-arm

UI Control

Fig. 1. Interventional X-ray System

formalizing interface specifications. It provides a family of domain-specific lan-
guages (DSLs) that integrates existing techniques from formal behavioural and
time modeling and is easily extensible. The most important analysis tool in
ComMA allows monitoring and checking of component executions against inter-
face specifications. The monitoring can be performed for already existing logs
with execution traces or by monitoring executions at runtime.

While developing ComMA and its monitoring capabilities we used the industry-
as-laboratory approach [12]. This means that tools and techniques are developed
in close interaction (e.g. on a daily basis) with real industrial projects. A sim-
ilar approach has been applied in an earlier industry-as-lab project on runtime
awareness [2].

The first version of ComMA was a basic domain-specific language and a few
generators for glue code, visualisations and very basic monitoring. This pro-
vided immediate benefits for the industrial projects and created interest for
further applications. It also led to a stream of feature requests which have been
incorporated based on user priorities. For instance, inspired by the usefulness
of monitoring timing constraints, users asked for monitoring of advanced data
constraints. We also added document generation based on requests of users. By
gradually increasing the number of generators and features, we incrementally
add more value to the projects using the ComMA framework.

As part of our industry-as-lab approach, we had to refactor ComMA based
on new insights we obtained while executing industrial cases. In addition, we
refactored the framework to improve maintainability. The initial monolithic lan-
guage has been split into a composition of DSLs for types, expressions, state
machines, etc.

The initial component monitoring supported checking of conformance be-
tween interfaces and their implementations and checking timing constraints ex-
pressed as rules. The rules give the admissible time intervals between events in
different contexts. Apart from timing behaviour, users were also interested in
monitoring data values. For example, client requests for a given system mode
with certain parameters have to match the parameters communicated later by
the system. We developed a new small DSL for expressing only data constraints.
It is known from the literature on runtime verification that time information in
the form of event timestamps can be treated in the same way as the data values
carried by events; they are just data fields associated to events. This observa-
tion motivated the unification of data and timing constraints into an underlying
generic language which is used to generate the monitoring infrastructure. These
changes in the DSLs infrastructure were executed iteratively and remained in-
visible for the users. Users could keep using the basic front-end notations for
data and timing constraints and stayed isolated from the changes in the imple-
mentation.

The main contribution of this paper is the description of the syntax and
semantics of the generic constraints language. In addition, we also present how
the two existing languages for time and data constraints relate to the generic
language.

This paper is organized as follows. Section 2 gives an overview of the related
work. An industrial case that provided a motivation and insights for our work is
presented in Section 3. Examples from the case are used to explain the DSLs in
ComMA (Section 4), and the support for monitoring time and data constraints
(Section 5). Section 6 presents the syntax and semantics of the generic constraints
language. Section 7 concludes the paper.

2 Related Work

Runtime verification [7, 9] is a technique for monitoring the behaviour of software
during its execution and checking if the behaviour conforms to a specification.
The literature contains a large number of methods to annotate programs with
specifications and the use of these annotations for runtime checks. Examples are
design by contract in Eiffel [10] and the Java Modeling Language (JML)[4]. As
a unifying approach, monitor-oriented programming [6] supports runtime moni-
toring by integrating specifications in the program via logical annotations, where
a particular specification formalism can be added as a logic plug-in. Actual mon-
itoring code is automatically synthesized from these annotations and integrated
at appropriate places in the program, according to user-defined configuration
attributes of the monitor.

The approach of ComMA is independent of the hardware or software imple-
mentation of a component. In our working context, the implementation of many
third-party components is not directly available. The properties are specified
over traces of component executions. Traces can be obtained via sniffing the
network traffic or from logs (if available).

Properties checked during monitoring can be expressed in various formalisms.
Examples are logic formulas, automata, and context free grammars. The con-
straint languages in ComMA are inspired by constructs available in Linear Tem-
poral Logic (LTL) and its real-time extension Metric Temporal Logic (MTL)[11].
Furthermore, our framework follows the ideas behind the languages RuleR and
Eagle [1] with respect to formulating properties as a set of rules and it adapts
the algorithms from the same work.

Interface signatures and behaviour can be defined in general-purpose mod-
eling languages like UML and SysML [8] for which many commercial tools ex-
ist. Engineers usually need only a subset of these rich languages. In addition,
tools require tailoring for a given problem area via profiles which is in effect a
domain-specific extension. ComMA provides a set of standalone DSLs instead
of extending an existing modeling language.

3 Industrial Case

With the interventional X-ray systems of Philips, X-ray movies of a patient’s
body can be made in real-time while executing a medical procedure. An example
procedure is placing a stent into the aorta of a patient. The physician uses the
system to navigate the stent through the patient’s arteries to the target position.
The arteries can be made visible by injecting a contrast medium. The physician
positions the X-ray beam with respect to the patient in such a way that she/he
can see the region of interest. This can be done by moving the table on which
the patient lies, and by moving the C-arm which holds the X-ray generator and
the X-ray detector. The table and C-arm can be maneuvered by means of a user
interface.

A patient table has multiple axes of movement that can be controlled by a
software interface. An example is the vertical movement that changes the height
of the table with respect to the table base. During movements, the patient and
the table can get in close proximity to the C-arm. This is controlled by safety
mechanisms to prevent hitting the patient. Examples of these mechanisms are
limiting the movement speed when the distance between table and C-arm is
reduced and to stop all movements when the communication between table and
system is lost.

Figure 1 shows an example of the system with a table developed at Philips.
Besides Philips tables, the system also supports tables of third-party vendors.
We applied ComMA to model a new interface between the interventional X-ray
system and a third-party table. The communication between the system and the
table uses an Ethernet connection and a proprietary protocol. The table has its
own User Interface (UI) that can be used to change the positions. The X-ray
system is treated as another UI for the table. From the perspective of the X-ray
system this means that movements can originate from other sources. Thus, the
system needs to observe the position of the table and to act when the distance
between table and C-arm becomes too close.

Table movements are controlled by a joystick. The joystick has to be con-
stantly leaned to a certain direction during the movement until the target posi-
tion is reached. If the joystick is released the movement stops. While moving, the
table notifies the system about its position and the movement status (moving,
position is reached, position is not reached).

ComMA was used to model the software interface of the table by defining
the signatures of the messages and the behaviour of the table by means of a
state machine. In addition, several time and data constraints related to safety
mechanisms were specified and checked.

In the following sections we explain the ComMA framework with a focus on
support for monitoring time and data constraints. The presentation is based on
simplified examples derived from the industrial case.

4 Overview of ComMA

4.1 ComMA Framework: Languages and Tools

The ComMA framework is based on a family of DSLs and allows users to specify
the interface of a server towards its clients by two main ingredients:

– The interface signature, consisting of groups of synchronous & asynchronous
calls and asynchronous notifications.

– The interface behaviour which is defined by:

• State machines that describe the allowed interactions between clients
and server, e.g., the allowed order of calls of clients and the allowed
notifications by the server in any state.

• Constraints on data and time, such as the allowed response time, the
periodicity of notifications, and data relations between the parameters
of subsequent calls.

Based on a ComMA model, the framework supports a number of generators, as
shown in Fig. 2:

– Visualization and documentation. ComMA generates PlantUML5 files that
visualize state machines. In addition, constraints can be intuitively repre-
sented as annotated UML sequence diagrams. Also MS Word documents
that are compliant with the company standard can be generated, based on
the M2Doc framework6. This transformation extracts definitions and com-
ments from models and inserts them in a document template. This process
also utilizes the diagrams obtained from state machines and constraint rules.

– Interface proxy code. Interface signatures can be transformed to interface
proxy code (C++ and C#) that can be incorporated in the company-specific
platform for transparent component deployment.

5 http://plantuml.com/
6 https://github.com/ObeoNetwork/M2Doc

Fig. 2. Overview of ComMA and generators

– Model-based testing. Based on the state machines, models can be generated
for various model-based testing tools such as SpecExplorer7. This allows test
generation and on-line testing.

– Simulation. Simulation of a model helps in receiving an early feedback and
detecting errors. State machine models are transformed to POOSL programs
(Parallel Object Oriented Specification Language) [14]. Engineers can use the
step-by-step visual execution facilities of POOSL8.

– Runtime monitoring. A modified version of the transformation to POOSL
produces an executable monitor for runtime verification. This feature is ex-
plained in details in Section 5.

4.2 Specifying Component Interfaces with ComMA

ComMA provides a DSL for defining interface signatures. Here we present a
simplified version of the interface of the operating table.

interface ITable{

types

enum Status {PosReached PosNotReached InMove}

commands

bool start

void stop

7 https://www.microsoft.com/en-us/research/project/model-based-testing-with-
specexplorer/

8 http://poosl.esi.nl/

signals

alive

moveVertical(int moveId , int pos)

notifications

verticalPosition(int pos , Status moveStatus)

}

We distinguish between two types of calls: commands that may be called
synchronously and always reply a result and asynchronous signals. Notifications
are asynchronous messages sent from a server to the clients. Commands, signals,
replies and notifications are referred to as events.

The interface above defines commands for starting and stopping the table
operational mode and a signal for moving the table in the vertical axis. Every
movement has an unique identifier (parameter moveId) and a target position
(parameter pos). The table can notify the system about its current position in
the vertical axis and the movement status. The status is encoded as a value
of an enumeration and denotes if the table is moving, has reached the target
position or the movement is interrupted and the target position is not reached.
Once the table is operational, the X-ray system has to send periodic signals to
it to indicate that the client side is alive. A signal is either a move request or an
alive signal (if no move is needed).

In ComMA, the behaviour of interfaces is specified by state machines. A state
machine is associated with at least one provided interface. Commands and signals
are triggers for state transitions. The machines have disjoint sets of transition
triggers and may share variables. Only one transition can be fired at a given
moment across all machines. The DSL allows only flat machines: nested states
are forbidden. All state transitions must be observable: either a transition is
triggered by a command/signal or the transition effect is observable, for example,
by sending a notification.

The following listing is a simplified specification of the externally visible
behaviour of the table interface.

machine Main provides ITable {

variables

int currentMoveId

init

currentMoveId := 0

initial state Inactive {

transition trigger: start

do: reply(true) next state: PositionReached

OR

do: reply(false) next state: Inactive

}

state PositionReached {

transition trigger: moveVertical(int moveId , int target)

guard: moveId != currentMoveId

do: currentMoveId := moveId

next state: Moving

transition trigger: moveVertical(int moveId , int target)

guard: moveId == currentMoveId

next state: PositionReached

transition trigger: alive next state: PositionReached

transition

do: verticalPosition (*, Status :: PosReached)

next state: PositionReached

transition trigger: stop do: reply

next state: Inactive

}

state PositionNotReached {

...

}

state Moving {

transition trigger: moveVertical(int moveId , int target)

do: currentMoveId := moveId

next state: Moving

transition

do: verticalPosition (*, Status :: PosReached)

next state: PositionReached

transition

do: verticalPosition (*, Status :: PosNotReached)

next state: PositionNotReached

transition

do: verticalPosition (*, Status :: InMove)

next state: Moving

}

}

The command start tries to activate the table. The result is indicated in the
return value. If the activation is successful, the table assumes a reached position
state. It can receive a move request with a given identifier (signal moveVertical
with a positive integer as identifier and a target position). If it is a new move
request, the table starts moving (represented by state Moving). The table is mov-
ing as long as it receives move requests. The movement status is continuously
reported via notifications verticalPosition. The listing shows three different tran-
sitions that send verticalPosition as a notification: one for each possible status.
The notation ’*’ denotes a value that is unknown in the state machine. The state
PositionNotReached is not elaborated. It is similar to state PositionReached.

If the table stops receiving the signal moveVertical, the movement is inter-
rupted and a notification for ’position not reached’ status is sent. The machine
then moves to PositionNotReached state. The machine above does not capture
this logic. It just states that at any moment a transition to a non-moving state
is possible. The described behaviour is captured in a timing constraint explained
in the next section.

5 Monitoring of Time and Data Constraints

Issues at system level are often traced back to issues related to the conformance
of components (possibly supplied by a third party) to their interface specifica-
tions. Many issues of this kind are manifested during the interaction of several
components and it is difficult to detect them if a component is tested in isola-
tion. Monitoring and checking component interactions can reveal the problems
at an earlier phase and help in analyzing logs harvested from systems in the field.
We applied available runtime verification techniques (mainly inspired by [1]) to
support specification and monitoring of interface behaviour and constraints on
timing and data.

5.1 General Scheme for Component Monitoring

Generally, runtime verification is a technique for checking system behaviour
against a property during the execution of the system. The general scheme [7]
is given in Fig. 3.

The property may be given in a formal specification language (automata,
logic formula, grammar), as a set of rules or a program. A monitor is derived
from a set of properties. The task of the monitor is to observe the execution
of the system and to produce a verdict, that is, a statement if the observation
satisfies the properties. The observation may be a series of system states or a
series of input and output events. Monitoring is executed either step by step
along with the system execution or over a log that contains the observations.

Fig. 4 shows how this general approach is applied in ComMA. The behavioral
model of the interfaces (state machines, timing and data rules) plays the role of
properties. The monitor processes events observed during component executions.
Currently the events are obtained in two ways: by logging during executions or

Fig. 3. General scheme of runtime verification

by monitoring network traffic when the component is deployed on the company-
specific middleware. It should be noted that currently the execution trace is
checked after it is finished, that is, the check does not happen at runtime. The
implementation of the monitor, however, is agnostic about the exact moment
when events are supplied (during or after component execution). Monitoring at
runtime can be performed if instrumentation is applied to components or to the
middleware layer.

Fig. 4. Monitoring in ComMA

The monitor is a POOSL program that is partially synthesized from the
constraint rules. It receives the events in the execution trace and sends them to
an executable model (also a POOSL program) derived from the state machines.
The state machine responds with events that are compared to the events in the
trace. The monitor also checks if the constraints hold for the trace. Verdicts
can be errors and warnings. Errors are violations of the state machine logic.

Warnings are violations of constraints. Errors stop the monitoring process, after
a warning the monitoring continues.

In the following subsections we elaborate on the support for specifying and
monitoring constraints.

5.2 Timing Constraints

The first type of constraints are timing constraints defined as timing rules. They
give the admissible intervals between events in different contexts. There are four
rule types.

Interval rules constrain the allowed time interval for observing an event if
a given preceding event was observed. The example rule named timeForReply
states that if the command stop is observed then the reply must be observed
between 10 and 20 ms after the command. The rule is checked on the first oc-
currence of reply after the command. Before checking timing rules, static checks
ensure that every command is properly matched by a reply. Pairs of command-
s/replies are reconstructed in the order of their handling by the component.

timeForReply

command stop -[10.0 ms .. 20.0 ms] -> reply

The second rule type is called conditional interval. It states that if two events
are observed without observing the first event in between then the interval be-
tween them lies within a certain boundary. The next example states that the
interval between start and a positive reply is 30 ms. The rule will not be applied
if the reply is false.

intervalBetweenEvents

command start

and

reply(true)

-> [.. 30.0 ms] between events

The third rule type allows specifications of periodic events. The following
rule states that after starting the system the connection should be kept alive
by sending signals every 100 ms. It is also possible to specify a jitter for the
expected period.

continousCommunication

reply(true) to command start then

any signal with period 100.0 ms jitter 10.0 ms

until

command stop

The fourth rule type allows stating that if a certain event is observed then
another event must be absent during a given interval after the observation. The
four types of rules can be combined in groups that form a scenario. Scenarios
and the rule for absence of an event are illustrated in the following example. It is
based on the safety mechanisms implemented in the table control. One of them

states that if a move request is delayed for more than 200 ms during movement,
the table must stop moving. The time for stopping after detecting the delay is
also constrained. The scenario specifies this constraint. The first rule acts as a
precondition: it detects if a move request is absent within 200 ms after receiving
the previous move request. If this happens then the table must stop within 1
second after the delay is detected. The stop is manifested by the notification
verticalPosition with the corresponding status value.

group intervalForStopping

in state Moving signal moveVertical

-> absent signal moveVertical in [.. 200.0 ms]

- [.. 1000.0 ms] ->

notification verticalPosition (*, Status :: PosNotReached)

end group

This rule illustrates also the possibility to specify state information in timing
rules. The rule will be triggered only if the signals are received in state Moving.
This is possible because the rules are evaluated over events that are already
accepted by the state machine, that is, state information is available.

5.3 Data Constraints

Apart from detecting delayed requests, other safety mechanisms in our industrial
case check the distance that the table is allowed to move after detecting the
absence of move requests. The distance should not exceed a certain value. This
is schematically given below by showing the expected sequence of events when
the table stops if move requests are no longer received:

verticalPosition(X, InMove)

moveVertical //The last moveVertical

... no more moveVertical signals ...

...

verticalPosition(Y, PosNotReached)

In order to check the distance we need to identify the last reported ver-
tical position (say X) in the verticalPosition notification just before the last
moveVertical signal. The fact that the table stops is indicated by a notification
verticalPosition with status PosNotReached and position Y. The absolute value
of Y-X must not exceed a certain limit.

We introduced a simple language for specifying data constraints. At an in-
tuitive level, the meaning of a data constraint rule is: if a certain sequence of
events is observed then the observed data values must satisfy a given condition.
The monitoring algorithm should allow the observed data values to be bound
to variables and then used in conditions. The specification of an expected event
sequence can be done by using a regular expression-like notation. It should be
possible to assert both the presence and the absence of events.

The following example shows the constraint expressed in the data constraints
language.

stoppingDistance //name of the constraint

notification verticalPosition(X, Status :: InMove);

in state Moving signal moveVertical;

no [signal moveVertical]

until

notification verticalPosition(Y, Status :: PosNotReached)

where abs(X-Y) <= 100

The rule is checked as follows. Given a sequence of observed events, the
following sub-sequence is searched:

– notification verticalPosition with status InMove. The reported position (as
the first parameter) is kept as value of variable X;

– signal moveVertical that follows immediately after the previously observed
notification;

– a sequence of events that do not contain moveVertical and the event specified
in the until clause. In this way we capture the fact that move requests are
no longer received;

– notification verticalPosition with status PosNotReached. This event marks
the end of the sequence to be matched. The position is kept in variable Y.

If such a sequence in the trace is detected then the condition in the where
clause is checked. It states that the distance should be less than 100 units. If the
sequence is not detected then the rule precondition is not fulfilled and the rule
holds for the given trace.

Considering the implementation options for checking the data constraints,
several factors played a role. First, we were aware that time and data constraints
can be treated uniformly: timestamps are just data fields associated to events.
This brought the option to replace the existing dedicated engine for checking time
rules with a more generic engine applicable to both types of constraints. Second,
there exist formalisms for expressing properties used in runtime monitoring.
However, these formalisms are complex and it is preferable to shield the engineers
from directly using complex notations.

We decided to define a generic constraints language and engine while keeping
two separate ’surface’ languages: for time rules and for data constraints. Specifi-
cations in these languages are transparently translated to the underlying generic
language. In this way, the surface languages can be kept simple and easily ex-
tensible if needed. Extensions would require only a syntactical translation to the
more expressive generic language and no changes in the engine.

The language for generic constraints is the main contribution of this paper
and is explained in the following section.

6 Language for Generic Constraints

The main construct in our solution allows specifying patterns for sequences of
timestamped events observed in execution traces. Sequence patterns (called here

just sequence) are used to construct formulas which are evaluated during moni-
toring.

A sequence is a concatenation of steps. Each step matches one or more ob-
served events in a trace. There are three kinds of steps: event selector, a dis-
junction of event selectors, and two until operators (weak and strong) inspired
by the similar constructs in LTL. Informally, the matching process starts from
the first step in a sequence and tries to match it with the first event in a given
trace. If successful, the process continues with the next steps that are matched
against the remaining events in the trace. During this process free variables in
the pattern are bound to matched values and become available in the next steps.
The following example shows the formulation of the stoppingDistance data con-
straint rule of Section 5.3 in the generic language.

stoppingDistance

<t1 , in state Moving

notification verticalPosition(X, InMove)>;

<t2 , in state Moving signal moveVertical >;

<t3 , not [signal moveVertical]>

until

<t4 , notification verticalPosition(Y, PosNotReached)>

where

abs(X-Y) <= 100

This rule has a name and a formula. The formula specifies a sequence (the
part before the where keyword) and a condition that uses variables in the
sequence (the part after where). The main difference with the syntax of the
same rule expressed in the data constraints language is the presence of timestamp
variables (t1, t2, ...).

The first step in the example sequence is an event selector. It has a variable
named t1 that is bound to the event timestamp. The until construct with a
general form Selector1 until Selector2 matches a sequence of events in which
the last event matches Selector2 and all the preceding events match Selector1.
As can be seen in the example, event patterns can be negated. Selectors may
also have a boolean condition that is evaluated if the event pattern matches (this
is shown in the following examples). The remaining part of this section defines
the syntax and semantics of the generic constraints language.

6.1 Language Syntax

The syntax rules of the language are given in Table 1. In these rules some non-
terminals are left undefined: S is a set of states, Cond is a Boolean expression
defined by the ComMA grammar, Var denotes a variable, and P̄ (event pa-
rameters) is a vector of variables and constants of types supported by ComMA.
States, conditions and parameters can be omitted. For simplicity, the type of the
event (command, signal, etc.) is skipped and in state is abbreviated to in. We

Table 1. Syntax of the Generic Constraints Language

Formula F ::= Seq | Seq and Cond | Seq cf F | not F | F or F

Sequence Seq ::= Step | Step until Step | Stepwuntil Step | Seq ; Seq

Step Step ::= ES | ES or ... or ES

Event Selector ES ::= 〈V ar,E,Cond〉| 〈V ar, V ar,E,Cond〉
Event Pattern E ::= in S EvDes(P̄) | not [in S EvDes(P̄)]

Event Designator EvDes ::= eventName | ∗

assume that every variable appears at most once in all event selectors. The usage
of variables in conditions has to be well-formed: no forward variable references
are allowed.

From the rules it can be seen that event selectors have two forms. The first
one was already explained by the example rule stoppingDistance. The second
one has an extra variable called occurrence counter. The value of the variable is
incremented every time the event selector is successfully matched in a sequence.
Consider the following example that uses an occurrence counter:

<t1 , i, in state s A>

or

<t2 , not[in state s A]>

until

<t3 , B>

If this sequence is evaluated against a trace, the counter i will be incremented
every time an event A is observed in state s until event B is observed. The usage
of counters is exemplified further in the context of periodic time rules.

Operator cf stands for conditional follow and expresses a common case in
which the match of a sequence is a precondition for checking a formula over the
remaining part of the trace. For example, the formula:

<t1 , A>;

<t2 , not[in state s B]>

until

<t3 , C>

cf

<t4 , D>

is used to check if all sequences of events that start with A, end with C and do
not contain event B occurring in state s, are immediately followed by event D.

Some useful logical operations are defined as the following abbreviations:

– F1 and F2 ≡ not (not F1 or not F2)

– F1 implies F2 ≡ not F1 or F2

– Seq where Cond ≡ not Seq or (Seq and Cond)

6.2 Language Semantics

Formulas are evaluated on traces of events. An event Ev is a tuple 〈t, s, e(D̄)〉
where

– t is a non-negative real number denoting the timestamp of the event. Times-
tamps form an increasing sequence;

– s is the state in which the event occurs. The event occurs in exactly one
state due to the constraints on the state machine syntax and semantics;

– e is event name and D̄ = (d1, ..., dn) is a possibly empty vector of constants
(event parameters).

A trace is obtained from a monitored sequence of timestamped events that
satisfies the state machine behaviour. The process of monitoring adds state in-
formation to the events. Trace T is a sequence of events Ev0, Ev1, ..., Evi, For
an integer i ≥ 0, we denote T i = Evi, Evi+1, ... and T (i) = Evi = 〈ti, si, ei(D̄i)〉.

Bindings of variables in event selectors are captured in environments. We
define an environment Γ = {[v1 7→ d1], ...} as a set of mappings from variables
to values. Γ [Γ ′] is the familiar operation of updating Γ with the mappings in Γ ′

and Γ (v) gives the value of v in Γ .
For an environment Γ and a boolean expression Cond, we denote Γ |= Cond

if Cond evaluates to true for the valuations in Γ .
When a sequence is matched in a trace, the environment with bound variables

and the remaining part of the trace are propagated to the possible next steps.
This is formalized as a partial function Cont : Trace×Env×Seq → Trace×Env.
Env is a set of environments and Trace is a set of traces.

We define a satisfaction relation between events, environments and event
patterns as follows:

– (〈t, s, e(D̄)〉, Γ) |= in S EvDes(P̄) iff EvDes = e or EvDes = ∗, s ∈ S, for
every constant ci in P̄ , ci = di and for the list of variables v1 . . . vk in P̄ we
have Γ = {[v1 7→ d1], . . . , [vk 7→ dk]}

– (〈t, s, e(D̄)〉,∅) |= not[in S EvDes(P̄)] iff for all Γ ,
(〈t, s, e(D̄)〉, Γ) 2 in S EvDes(P̄)

If the set of states S and parameters P̄ are not used in the event pattern,
the corresponding checks are skipped.

The semantics of formulas is defined as satisfaction relation between formulas,
traces and environments. We start with the semantics of sequences.

– (T, Γ) |= 〈V ar,E,Cond〉 iff (T (0), Γm) |= E and Γ ′ |= Cond, where Γ ′ =
Γ [Γm][V ar 7→ t0]

Cont(T, Γ, 〈V ar,E,Cond〉) = 〈T 1, Γ ′〉

– (T, Γ) |= 〈V ar1, V ar2, E, Cond〉 iff (T, Γ) |= 〈V ar1, E, Cond〉

Cont(T, Γ, 〈V ar1, V ar2, E, Cond〉) = 〈T 1, Γ ′[V ar2 7→ Γ (V ar2) + 1]〉 where
Cont(T, Γ, 〈V ar1, E, Cond〉) = 〈T 1, Γ ′〉. Every occurrence counter takes ini-
tial value 0 before a formula is evaluated on a trace.

– (T, Γ) |= ES1 or...orESn iff there exist i such that 1 ≤ i ≤ n, (T, Γ) |= ESi

Cont(T, Γ,ES1 or...or ESn) = 〈T 1, Γ [
⋃
k

(Γk \ Γ)]〉, for all k such that

(T, Γ) |= ESk and Cont(T, Γ,ESk) = 〈T 1, Γk〉

It should be noted that
⋃
k

(Γk \ Γ) cannot contain two different bindings for

the same variable because a variable can occur at most once in all ESk.

– (T, Γ) |= Step1 untilStep2 iff there exist i such that i ≥ 0, (T i, Γ i) |= Step2
and for each k, 0 ≤ k<i, (T k, Γ k) |= Step1 and (T k, Γ k) 2 Step2 where
environments are defined as:
• Γ 0 = Γ
• Cont(T k, Γ k, Step1) = 〈T k+1, Γ k+1〉 for all k, 0 ≤ k<i

Cont(T, Γ, Step1 until Step2) = Cont(T i, Γ i, Step2)

– (T, Γ) |= Step1 wuntil Step2 iff:
• (T, Γ) |= Step1 until Step2
Cont(T, Γ, Step1 wuntil Step2) = Cont(T, Γ, Step1 until Step2)

or
• (T i, Γ i) |= Step1, for all i ≥ 0 and Γ i defined as in the case of until.
Cont is undefined

– (T, Γ) |= Seq1;Seq2 iff (T, Γ) |= Seq1, Cont(T, Γ, Seq1) is defined and has
value 〈T i, Γ ′〉 for some i ≥ 1, and (T i, Γ ′) |= Seq2

Cont(T, Γ, Seq1;Seq2) = Cont(T i, Γ ′, Seq2)

– (T, Γ) |= Seq andCond iff (T, Γ) |= Seq, Cont(T, Γ, Seq) is defined and has
value 〈T i, Γ ′〉 and Γ ′ |= Cond

– (T, Γ) |= Seq cf F iff
• (T, Γ) |= not Seq

or
• (T, Γ) |= Seq, Cont(T, Γ, Seq) = 〈T i, Γ ′〉 is defined and (T i, Γ ′) |= F

– (T, Γ) |= not F if (T, Γ) 2 F

– (T, Γ) |= F1 or F2 if (T, Γ) |= F1 or (T, Γ) |= F2

We state that a formula F holds in a trace T and an initial environment Γ
if for every i ≥ 0, (T i, Γ) |= F . The initial environment gives 0 as a value of
all occurrence counter variables. For the other variables the user can supply an
initial value or a default value is assumed.

During monitoring, time and data constraints are translated to formulas in
the presented generic language. The translation is automatic and transparent
to the users. Hence, the users do not need to work directly with the generic
formulas which are often more verbose and more difficult to grasp than the
source constraints. We first show how time rules are translated.

6.3 Translation of Timing Constraints

In this section we show how different types of timing rules are translated into
formulas in the generic constraints language.

Timing rules use a simplified event selectors of the form inSe(P̄), where P̄ is
a possibly empty vector of constants. The set of states S and the parameters can
be omitted. The translation of event selectors in timing rules to the selectors in
the generic language is trivial and will not be discussed. Selectors will be given
in capital letters A, B,...

Interval Rule. The general form is:

A -[p..q] -> B

A and B are selectors, [p..q] denotes a time interval with an obvious constraint
0 ≤ p < q. q may be infinity. The interval rule is translated to the following
formula:

<t1 , A>

cf

<t2 , not[B]>

until

<t3 , B, (t3 -t1) in [p..q]>

The formula states that if a match of A is observed then there must be an
occurrence of event that matches B and the first such occurrence is in the interval
[p, q].

Conditional Interval Rule. The rule gives two events as a premise of the rule
and an expected interval.

A and B -> [p..q] between events

The rule is translated to:

<t1 , A>; <t2 , not[A]> until <t3, B>

where (t3-t1) in [p..q]

Absence of Event. The rule specifies an event that is a condition for not
observing a follow up event in a certain interval.

A -> absent B in [p..q]

The corresponding formula is:

not

(<t1 , A>;

<t2 , *, t2 -t1 <= q>

until

<t3 , B, (t3 -t1) in [p..q]>)

Periodic event rule. The rule specifies a triggering event A as a condition for
a periodic observation of B with a period p and jitter j until a stop event C is
observed.

A then B with period p and jitter j until C

The meaning of the rule is that if an event A is observed at time t then the
i-th occurrence of event B after A and before C must be in the time interval
[t+ i ∗ p− j, t+ i ∗ p+ j]. The formula for this rule is:

<t, A>

cf

(<t1 , i, B, t1 in [t + (i + 1)*p -j, t + (i + 1)*p + j]>

or

<t2 , not[B], t2 <= t + (i + 1)*p + j>)

wuntil

<t3 , C, t3 <= t + (i + 1)*p + j>

The rule uses an event selector with occurrence counter i. If an event A is
observed then we check if the formula after ’cf’ is satisfied for the events following
A. The timestamp of A is bound to the variable t. There are three cases:

– we observe event B with timestamp t1. The condition of the first step in the
disjunction checks if t1 is in the allowed interval. If it is not, the formula is
not satisfied. If the condition is true (i.e. the occurrence is in the expected
interval) the value of i is incremented and used to calculate the time interval
of the eventual next occurrence of B ;

– we observe an event different from B and C. In this case, the second com-
ponent of the disjunction matches the event and we check the condition. If
the condition is false this means that after the last occurrence of B we have
not observed an event B and we have just observed an event that is already
after the allowed interval. Therefore the formula is not satisfied;

– we observe event C. The condition checks if C is observed within the expected
time upper bound for the event B. If the condition is false we have the
situation in the previous case: B is not found in the expected interval and
we have an event after this interval.

The semantics of the rule admits the case when C is never observed. wuntil
is used to handle this.

The translation of periodic time rules illustrates that the resulting generic
formulas may be more complex and more difficult to read than the original time
constraint. We recall that users do not work with generic formulas directly. They
use the more compact syntax of the surface languages.

Group Time Rule. This rule type allows specifying a rule that is a precon-
dition for a series of interval rules thus allowing a scenario of several events.
We will only show the case when an absence of event may be followed by other
events with given time intervals. An example was shown in the previous section.
The general form is:

group

A -> absent B in [0 .. p]

- [p1 .. q1] -> C

- [p2 .. q2] -> D

...

end group

This rule is translated to the formula:

<t1 , A>;

<t2 , not[B], (t2-t1) <= p>

wuntil

<t3 , *, (t3 -t1) > p>

implies

<t4 , A>; <t5 , *> until <t6 , C, t6 -t4 -p in [p1..q1]>;

<t7 , not[D]> until <t8, D, t8-t6 in [p2..q2]>;

....

6.4 Translation of Data Constraints

The grammar for data constraints rules is in Table 2. This language is as a subset
of the generic constraints language following the same semantics.

Table 2. Syntax of Data Constraints Language

Data Constraint DConstraint ::= Seq where Cond

Sequence Seq ::= Step | Step until Step | Seq ; Seq

Step Step ::= in S EvDes(P̄) | not [in S EvDes(P̄)]

Event Designator EvDes ::= eventName | ∗

6.5 Implementation Considerations

The definition of semantics for the generic constraints allows a proof that the
initial semantics of time rules is preserved by the translation to the generic
language. Generally, the development of the formalization enabled better under-
standing of the subtle details and greatly supported the software implementation.

An important aspect of the implementation is the fact that in a practical
setting we deal with finite traces whereas the semantics of the formulas is given
over infinite traces. This affects the evaluation of formulas. Consider an interval
timing rule. In the trace we may observe the first event and according to the rule
we must observe the second event within certain period of time. If the trace ends

before passing this period and no event is observed the rule evaluates to false.
However, we cannot conclude if the second event will never appear because the
information is not complete (monitoring has stopped). For situations like this
we do not give a yes/no verdict for the rule. Instead, a warning is produced that
states the rule has not been fully evaluated due to the termination of monitoring.
As an alternative, the semantics can be defined for finite traces. This is a subject
of future investigation.

6.6 Application of Monitoring on the Industrial Case

Component monitoring was applied during the development of the client soft-
ware for the operating table. The examples shown here are simplifications of the
actual models. The real model and constraints are more complex and take into
account the complete interface and its behaviour. Several issues were revealed.
For instance, movement requests with negative identifiers were sent by the client
and accepted by the component. This was detected as a violation of the model
and corrections were implemented in the software. The availability of explicit
timing constraints allowed to experiment with different values for the allowed
delays. The experiments revealed situations in which some events occur earlier
than expected.

Generally, the process of modeling the intended behaviour of the interface
based on textual documentation supported the engineers to explore cases in
which the documentation was missing or the interpretation of the information
was not clear. We also faced situations when the data constraints language was
not expressive enough. In these cases, the constraints were successfully expressed
in the generic language.

7 Concluding Remarks

The availability of precise component interface specifications enables early detec-
tion of defects and ultimately supports the development of software with higher
quality. In this paper we presented ComMA, a framework for interface behaviour
specification and focused on the support for runtime monitoring of timing and
data constraints. The DSLs in ComMA integrate techniques and results from
different research areas and provide a single entry point for engineers to specify
and develop component interfaces.

The development of ComMA follows the industry-as-laboratory approach.
DSLs are based on the concrete needs of the engineers and evolve following these
needs. The developed languages are not business-specific and are not restricted
to the medical domain. They are aimed at problems that are found in other
domains as well and utilize general techniques thus making the framework easily
generalizable.

Acknowledgements. The anonymous reviewers are thanked for useful sug-
gestions for improvement. We would like to thank Dirk-Jan Swagerman for his
support and the collaborating teams at Philips for constructive feedback.

The second author is grateful to Ed Brinksma for the very pleasant collab-
oration when Ed was the scientific director of the Embedded Systems Institute
(currently TNO-ESI). With his very broad knowledge he was able to discuss
any topic with experts and he created an excellent environment for productive
industry-as-lab projects. Moreover, Ed is thanked for the stimulating role in the
career development of the second author.

References

1. Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for
run-time monitoring: From Eagle to RuleR. In Sokolsky and Tasiran [13], pages
111–125.

2. Ed Brinksma and Jozef Hooman. Dependability for high–tech systems: an
industry–as–laboratory approach. In Design, Automation & Test in Europe
(DATE’08), pages 1226–1231. European Design and Automation Association
(EDAA), 2008.

3. Manfred Broy, Doron A. Peled, and Georg Kalus, editors. Engineering Dependable
Software Systems, volume 34 of NATO Science for Peace and Security Series, D:
Information and Communication Security. IOS Press, 2013.

4. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools
and applications. STTT, 7(3):212–232, 2005.

5. Franck Cassez and Claude Jard, editors. Formal Modeling and Analysis of Timed
Systems, 6th International Conference, FORMATS 2008, Saint Malo, France,
September 15-17, 2008. Proceedings, volume 5215 of Lecture Notes in Computer
Science. Springer, 2008.

6. Feng Chen, Marcelo D’Amorim, and Grigore Rosu. A formal monitoring-based
framework for software development and analysis. In Proceedings ICFEM 2004,
volume 3308 of LNCS, pages 357–372. Springer-Verlag, 2004.

7. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verification.
In Broy et al. [3], pages 141–175.

8. Hongman Kim, David Fried, Peter Menegay, Grant Soremekun, and Christopher
Oster. Application of integrated modeling and analysis to development of complex
systems. Procedia Computer Science, 16:98 – 107, 2013.

9. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
The Journal of Logic and Algebraic Programming, 78(5):293 – 303, 2009.

10. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1st edition, 1988.

11. Joël Ouaknine and James Worrell. Some recent results in metric temporal logic.
In Cassez and Jard [5], pages 1–13.

12. Colin Potts. Software-engineering research revisited. IEEE Software, 19(9):19–28,
1993.

13. Oleg Sokolsky and Serdar Tasiran, editors. Runtime Verification, 7th International
Workshop, RV 2007, Vancouver, Canada, March 13, 2007, Revised Selected Papers,
volume 4839 of Lecture Notes in Computer Science. Springer, 2007.

14. Bart Theelen, Oana Florescu, Marc Geilen, Jinfeng Huang, Piet van der Putten,
and Jeroen Voeten. Software/Hardware Engineering with the Parallel Object-
Oriented Specification Language. In Proc. of MEMOCODE’07, pages 139–148.
IEEE, 2007.

